third_party.pylibs.pylint.src/pylint/checkers/utils.py

1722 lines
56 KiB
Python

# Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
# For details: https://github.com/PyCQA/pylint/blob/main/LICENSE
# Copyright (c) https://github.com/PyCQA/pylint/blob/main/CONTRIBUTORS.txt
"""Some functions that may be useful for various checkers."""
import builtins
import itertools
import numbers
import re
import string
import warnings
from functools import lru_cache, partial
from typing import (
Callable,
Dict,
Iterable,
List,
Match,
Optional,
Set,
Tuple,
Type,
TypeVar,
Union,
)
import _string
import astroid
import astroid.objects
from astroid import TooManyLevelsError, nodes
from astroid.context import InferenceContext
from pylint.constants import TYPING_TYPE_CHECKS_GUARDS
COMP_NODE_TYPES = (
nodes.ListComp,
nodes.SetComp,
nodes.DictComp,
nodes.GeneratorExp,
)
EXCEPTIONS_MODULE = "builtins"
ABC_MODULES = {"abc", "_py_abc"}
ABC_METHODS = {
"abc.abstractproperty",
"abc.abstractmethod",
"abc.abstractclassmethod",
"abc.abstractstaticmethod",
}
TYPING_PROTOCOLS = frozenset(
{"typing.Protocol", "typing_extensions.Protocol", ".Protocol"}
)
ITER_METHOD = "__iter__"
AITER_METHOD = "__aiter__"
NEXT_METHOD = "__next__"
GETITEM_METHOD = "__getitem__"
CLASS_GETITEM_METHOD = "__class_getitem__"
SETITEM_METHOD = "__setitem__"
DELITEM_METHOD = "__delitem__"
CONTAINS_METHOD = "__contains__"
KEYS_METHOD = "keys"
# Dictionary which maps the number of expected parameters a
# special method can have to a set of special methods.
# The following keys are used to denote the parameters restrictions:
#
# * None: variable number of parameters
# * number: exactly that number of parameters
# * tuple: these are the odd ones. Basically it means that the function
# can work with any number of arguments from that tuple,
# although it's best to implement it in order to accept
# all of them.
_SPECIAL_METHODS_PARAMS = {
None: ("__new__", "__init__", "__call__"),
0: (
"__del__",
"__repr__",
"__str__",
"__bytes__",
"__hash__",
"__bool__",
"__dir__",
"__len__",
"__length_hint__",
"__iter__",
"__reversed__",
"__neg__",
"__pos__",
"__abs__",
"__invert__",
"__complex__",
"__int__",
"__float__",
"__index__",
"__trunc__",
"__floor__",
"__ceil__",
"__enter__",
"__aenter__",
"__getnewargs_ex__",
"__getnewargs__",
"__getstate__",
"__reduce__",
"__copy__",
"__unicode__",
"__nonzero__",
"__await__",
"__aiter__",
"__anext__",
"__fspath__",
"__subclasses__",
"__init_subclass__",
),
1: (
"__format__",
"__lt__",
"__le__",
"__eq__",
"__ne__",
"__gt__",
"__ge__",
"__getattr__",
"__getattribute__",
"__delattr__",
"__delete__",
"__instancecheck__",
"__subclasscheck__",
"__getitem__",
"__missing__",
"__delitem__",
"__contains__",
"__add__",
"__sub__",
"__mul__",
"__truediv__",
"__floordiv__",
"__rfloordiv__",
"__mod__",
"__divmod__",
"__lshift__",
"__rshift__",
"__and__",
"__xor__",
"__or__",
"__radd__",
"__rsub__",
"__rmul__",
"__rtruediv__",
"__rmod__",
"__rdivmod__",
"__rpow__",
"__rlshift__",
"__rrshift__",
"__rand__",
"__rxor__",
"__ror__",
"__iadd__",
"__isub__",
"__imul__",
"__itruediv__",
"__ifloordiv__",
"__imod__",
"__ilshift__",
"__irshift__",
"__iand__",
"__ixor__",
"__ior__",
"__ipow__",
"__setstate__",
"__reduce_ex__",
"__deepcopy__",
"__cmp__",
"__matmul__",
"__rmatmul__",
"__imatmul__",
"__div__",
),
2: ("__setattr__", "__get__", "__set__", "__setitem__", "__set_name__"),
3: ("__exit__", "__aexit__"),
(0, 1): ("__round__",),
(1, 2): ("__pow__",),
}
SPECIAL_METHODS_PARAMS = {
name: params
for params, methods in _SPECIAL_METHODS_PARAMS.items()
for name in methods
}
PYMETHODS = set(SPECIAL_METHODS_PARAMS)
SUBSCRIPTABLE_CLASSES_PEP585 = frozenset(
(
"builtins.tuple",
"builtins.list",
"builtins.dict",
"builtins.set",
"builtins.frozenset",
"builtins.type",
"collections.deque",
"collections.defaultdict",
"collections.OrderedDict",
"collections.Counter",
"collections.ChainMap",
"_collections_abc.Awaitable",
"_collections_abc.Coroutine",
"_collections_abc.AsyncIterable",
"_collections_abc.AsyncIterator",
"_collections_abc.AsyncGenerator",
"_collections_abc.Iterable",
"_collections_abc.Iterator",
"_collections_abc.Generator",
"_collections_abc.Reversible",
"_collections_abc.Container",
"_collections_abc.Collection",
"_collections_abc.Callable",
"_collections_abc.Set",
"_collections_abc.MutableSet",
"_collections_abc.Mapping",
"_collections_abc.MutableMapping",
"_collections_abc.Sequence",
"_collections_abc.MutableSequence",
"_collections_abc.ByteString",
"_collections_abc.MappingView",
"_collections_abc.KeysView",
"_collections_abc.ItemsView",
"_collections_abc.ValuesView",
"contextlib.AbstractContextManager",
"contextlib.AbstractAsyncContextManager",
"re.Pattern",
"re.Match",
)
)
T_Node = TypeVar("T_Node", bound=nodes.NodeNG)
class NoSuchArgumentError(Exception):
pass
class InferredTypeError(Exception):
pass
def is_inside_lambda(node: nodes.NodeNG) -> bool:
"""Return whether the given node is inside a lambda."""
warnings.warn(
"utils.is_inside_lambda will be removed in favour of calling "
"utils.get_node_first_ancestor_of_type(x, nodes.Lambda) in pylint 3.0",
DeprecationWarning,
)
return any(isinstance(parent, nodes.Lambda) for parent in node.node_ancestors())
def get_all_elements(
node: nodes.NodeNG,
) -> Iterable[nodes.NodeNG]:
"""Recursively returns all atoms in nested lists and tuples."""
if isinstance(node, (nodes.Tuple, nodes.List)):
for child in node.elts:
yield from get_all_elements(child)
else:
yield node
def is_super(node: nodes.NodeNG) -> bool:
"""Return True if the node is referencing the "super" builtin function."""
if getattr(node, "name", None) == "super" and node.root().name == "builtins":
return True
return False
def is_error(node: nodes.FunctionDef) -> bool:
"""Return true if the given function node only raises an exception."""
return len(node.body) == 1 and isinstance(node.body[0], nodes.Raise)
builtins = builtins.__dict__.copy() # type: ignore[assignment]
SPECIAL_BUILTINS = ("__builtins__",) # '__path__', '__file__')
def is_builtin_object(node: nodes.NodeNG) -> bool:
"""Returns True if the given node is an object from the __builtin__ module."""
return node and node.root().name == "builtins"
def is_builtin(name: str) -> bool:
"""Return true if <name> could be considered as a builtin defined by python."""
return name in builtins or name in SPECIAL_BUILTINS # type: ignore[attr-defined]
def is_defined_in_scope(
var_node: nodes.NodeNG,
varname: str,
scope: nodes.NodeNG,
) -> bool:
if isinstance(scope, nodes.If):
for node in scope.body:
if (
isinstance(node, nodes.Assign)
and any(
isinstance(target, nodes.AssignName) and target.name == varname
for target in node.targets
)
) or (isinstance(node, nodes.Nonlocal) and varname in node.names):
return True
elif isinstance(scope, (COMP_NODE_TYPES, nodes.For)):
for ass_node in scope.nodes_of_class(nodes.AssignName):
if ass_node.name == varname:
return True
elif isinstance(scope, nodes.With):
for expr, ids in scope.items:
if expr.parent_of(var_node):
break
if ids and isinstance(ids, nodes.AssignName) and ids.name == varname:
return True
elif isinstance(scope, (nodes.Lambda, nodes.FunctionDef)):
if scope.args.is_argument(varname):
# If the name is found inside a default value
# of a function, then let the search continue
# in the parent's tree.
if scope.args.parent_of(var_node):
try:
scope.args.default_value(varname)
scope = scope.parent
is_defined_in_scope(var_node, varname, scope)
except astroid.NoDefault:
pass
return True
if getattr(scope, "name", None) == varname:
return True
elif isinstance(scope, nodes.ExceptHandler):
if isinstance(scope.name, nodes.AssignName):
ass_node = scope.name
if ass_node.name == varname:
return True
return False
def is_defined_before(var_node: nodes.Name) -> bool:
"""Check if the given variable node is defined before.
Verify that the variable node is defined by a parent node
(list, set, dict, or generator comprehension, lambda)
or in a previous sibling node on the same line
(statement_defining ; statement_using).
"""
varname = var_node.name
for parent in var_node.node_ancestors():
if is_defined_in_scope(var_node, varname, parent):
return True
# possibly multiple statements on the same line using semicolon separator
stmt = var_node.statement(future=True)
_node = stmt.previous_sibling()
lineno = stmt.fromlineno
while _node and _node.fromlineno == lineno:
for assign_node in _node.nodes_of_class(nodes.AssignName):
if assign_node.name == varname:
return True
for imp_node in _node.nodes_of_class((nodes.ImportFrom, nodes.Import)):
if varname in [name[1] or name[0] for name in imp_node.names]:
return True
_node = _node.previous_sibling()
return False
def is_default_argument(
node: nodes.NodeNG, scope: Optional[nodes.NodeNG] = None
) -> bool:
"""Return true if the given Name node is used in function or lambda
default argument's value
"""
if not scope:
scope = node.scope()
if isinstance(scope, (nodes.FunctionDef, nodes.Lambda)):
all_defaults = itertools.chain(
scope.args.defaults, (d for d in scope.args.kw_defaults if d is not None)
)
return any(
default_name_node is node
for default_node in all_defaults
for default_name_node in default_node.nodes_of_class(nodes.Name)
)
return False
def is_func_decorator(node: nodes.NodeNG) -> bool:
"""Return true if the name is used in function decorator."""
for parent in node.node_ancestors():
if isinstance(parent, nodes.Decorators):
return True
if parent.is_statement or isinstance(
parent,
(
nodes.Lambda,
nodes.ComprehensionScope,
nodes.ListComp,
),
):
break
return False
def is_ancestor_name(frame: nodes.ClassDef, node: nodes.NodeNG) -> bool:
"""Return whether `frame` is an astroid.Class node with `node` in the
subtree of its bases attribute
"""
if not isinstance(frame, nodes.ClassDef):
return False
return any(node in base.nodes_of_class(nodes.Name) for base in frame.bases)
def is_being_called(node: nodes.NodeNG) -> bool:
"""Return True if node is the function being called in a Call node."""
return isinstance(node.parent, nodes.Call) and node.parent.func is node
def assign_parent(node: nodes.NodeNG) -> nodes.NodeNG:
"""Return the higher parent which is not an AssignName, Tuple or List node."""
while node and isinstance(node, (nodes.AssignName, nodes.Tuple, nodes.List)):
node = node.parent
return node
def overrides_a_method(class_node: nodes.ClassDef, name: str) -> bool:
"""Return True if <name> is a method overridden from an ancestor
which is not the base object class
"""
for ancestor in class_node.ancestors():
if ancestor.name == "object":
continue
if name in ancestor and isinstance(ancestor[name], nodes.FunctionDef):
return True
return False
def check_messages(*messages: str) -> Callable:
"""Decorator to store messages that are handled by a checker method."""
def store_messages(func):
func.checks_msgs = messages
return func
return store_messages
class IncompleteFormatString(Exception):
"""A format string ended in the middle of a format specifier."""
class UnsupportedFormatCharacter(Exception):
"""A format character in a format string is not one of the supported
format characters.
"""
def __init__(self, index):
super().__init__(index)
self.index = index
def parse_format_string(
format_string: str,
) -> Tuple[Set[str], int, Dict[str, str], List[str]]:
"""Parses a format string, returning a tuple (keys, num_args).
Where 'keys' is the set of mapping keys in the format string, and 'num_args' is the number
of arguments required by the format string. Raises IncompleteFormatString or
UnsupportedFormatCharacter if a parse error occurs.
"""
keys = set()
key_types = {}
pos_types = []
num_args = 0
def next_char(i):
i += 1
if i == len(format_string):
raise IncompleteFormatString
return (i, format_string[i])
i = 0
while i < len(format_string):
char = format_string[i]
if char == "%":
i, char = next_char(i)
# Parse the mapping key (optional).
key = None
if char == "(":
depth = 1
i, char = next_char(i)
key_start = i
while depth != 0:
if char == "(":
depth += 1
elif char == ")":
depth -= 1
i, char = next_char(i)
key_end = i - 1
key = format_string[key_start:key_end]
# Parse the conversion flags (optional).
while char in "#0- +":
i, char = next_char(i)
# Parse the minimum field width (optional).
if char == "*":
num_args += 1
i, char = next_char(i)
else:
while char in string.digits:
i, char = next_char(i)
# Parse the precision (optional).
if char == ".":
i, char = next_char(i)
if char == "*":
num_args += 1
i, char = next_char(i)
else:
while char in string.digits:
i, char = next_char(i)
# Parse the length modifier (optional).
if char in "hlL":
i, char = next_char(i)
# Parse the conversion type (mandatory).
flags = "diouxXeEfFgGcrs%a"
if char not in flags:
raise UnsupportedFormatCharacter(i)
if key:
keys.add(key)
key_types[key] = char
elif char != "%":
num_args += 1
pos_types.append(char)
i += 1
return keys, num_args, key_types, pos_types
def split_format_field_names(format_string) -> Tuple[str, Iterable[Tuple[bool, str]]]:
try:
return _string.formatter_field_name_split(format_string)
except ValueError as e:
raise IncompleteFormatString() from e
def collect_string_fields(format_string) -> Iterable[Optional[str]]:
"""Given a format string, return an iterator
of all the valid format fields.
It handles nested fields as well.
"""
formatter = string.Formatter()
try:
parseiterator = formatter.parse(format_string)
for result in parseiterator:
if all(item is None for item in result[1:]):
# not a replacement format
continue
name = result[1]
nested = result[2]
yield name
if nested:
yield from collect_string_fields(nested)
except ValueError as exc:
# Probably the format string is invalid.
if exc.args[0].startswith("cannot switch from manual"):
# On Jython, parsing a string with both manual
# and automatic positions will fail with a ValueError,
# while on CPython it will simply return the fields,
# the validation being done in the interpreter (?).
# We're just returning two mixed fields in order
# to trigger the format-combined-specification check.
yield ""
yield "1"
return
raise IncompleteFormatString(format_string) from exc
def parse_format_method_string(
format_string: str,
) -> Tuple[List[Tuple[str, List[Tuple[bool, str]]]], int, int]:
"""Parses a PEP 3101 format string, returning a tuple of
(keyword_arguments, implicit_pos_args_cnt, explicit_pos_args).
keyword_arguments is the set of mapping keys in the format string, implicit_pos_args_cnt
is the number of arguments required by the format string and
explicit_pos_args is the number of arguments passed with the position.
"""
keyword_arguments = []
implicit_pos_args_cnt = 0
explicit_pos_args = set()
for name in collect_string_fields(format_string):
if name and str(name).isdigit():
explicit_pos_args.add(str(name))
elif name:
keyname, fielditerator = split_format_field_names(name)
if isinstance(keyname, numbers.Number):
explicit_pos_args.add(str(keyname))
try:
keyword_arguments.append((keyname, list(fielditerator)))
except ValueError as e:
raise IncompleteFormatString() from e
else:
implicit_pos_args_cnt += 1
return keyword_arguments, implicit_pos_args_cnt, len(explicit_pos_args)
def is_attr_protected(attrname: str) -> bool:
"""Return True if attribute name is protected (start with _ and some other
details), False otherwise.
"""
return (
attrname[0] == "_"
and attrname != "_"
and not (attrname.startswith("__") and attrname.endswith("__"))
)
def node_frame_class(node: nodes.NodeNG) -> Optional[nodes.ClassDef]:
"""Return the class that is wrapping the given node.
The function returns a class for a method node (or a staticmethod or a
classmethod), otherwise it returns `None`.
"""
klass = node.frame(future=True)
nodes_to_check = (
nodes.NodeNG,
astroid.UnboundMethod,
astroid.BaseInstance,
)
while (
klass
and isinstance(klass, nodes_to_check)
and not isinstance(klass, nodes.ClassDef)
):
if klass.parent is None:
return None
klass = klass.parent.frame(future=True)
return klass
def get_outer_class(class_node: astroid.ClassDef) -> Optional[astroid.ClassDef]:
"""Return the class that is the outer class of given (nested) class_node."""
parent_klass = class_node.parent.frame(future=True)
return parent_klass if isinstance(parent_klass, astroid.ClassDef) else None
def is_attr_private(attrname: str) -> Optional[Match[str]]:
"""Check that attribute name is private (at least two leading underscores,
at most one trailing underscore)
"""
regex = re.compile("^_{2,}.*[^_]+_?$")
return regex.match(attrname)
def get_argument_from_call(
call_node: nodes.Call, position: Optional[int] = None, keyword: Optional[str] = None
) -> nodes.Name:
"""Returns the specified argument from a function call.
:param nodes.Call call_node: Node representing a function call to check.
:param int position: position of the argument.
:param str keyword: the keyword of the argument.
:returns: The node representing the argument, None if the argument is not found.
:rtype: nodes.Name
:raises ValueError: if both position and keyword are None.
:raises NoSuchArgumentError: if no argument at the provided position or with
the provided keyword.
"""
if position is None and keyword is None:
raise ValueError("Must specify at least one of: position or keyword.")
if position is not None:
try:
return call_node.args[position]
except IndexError:
pass
if keyword and call_node.keywords:
for arg in call_node.keywords:
if arg.arg == keyword:
return arg.value
raise NoSuchArgumentError
def inherit_from_std_ex(node: nodes.NodeNG) -> bool:
"""Return whether the given class node is subclass of
exceptions.Exception.
"""
ancestors = node.ancestors() if hasattr(node, "ancestors") else []
return any(
ancestor.name in {"Exception", "BaseException"}
and ancestor.root().name == EXCEPTIONS_MODULE
for ancestor in itertools.chain([node], ancestors)
)
def error_of_type(handler: nodes.ExceptHandler, error_type) -> bool:
"""Check if the given exception handler catches
the given error_type.
The *handler* parameter is a node, representing an ExceptHandler node.
The *error_type* can be an exception, such as AttributeError,
the name of an exception, or it can be a tuple of errors.
The function will return True if the handler catches any of the
given errors.
"""
def stringify_error(error):
if not isinstance(error, str):
return error.__name__
return error
if not isinstance(error_type, tuple):
error_type = (error_type,)
expected_errors = {stringify_error(error) for error in error_type}
if not handler.type:
return False
return handler.catch(expected_errors)
def decorated_with_property(node: nodes.FunctionDef) -> bool:
"""Detect if the given function node is decorated with a property."""
if not node.decorators:
return False
for decorator in node.decorators.nodes:
try:
if _is_property_decorator(decorator):
return True
except astroid.InferenceError:
pass
return False
def _is_property_kind(node, *kinds):
if not isinstance(node, (astroid.UnboundMethod, nodes.FunctionDef)):
return False
if node.decorators:
for decorator in node.decorators.nodes:
if isinstance(decorator, nodes.Attribute) and decorator.attrname in kinds:
return True
return False
def is_property_setter(node: nodes.FunctionDef) -> bool:
"""Check if the given node is a property setter."""
return _is_property_kind(node, "setter")
def is_property_deleter(node: nodes.FunctionDef) -> bool:
"""Check if the given node is a property deleter."""
return _is_property_kind(node, "deleter")
def is_property_setter_or_deleter(node: nodes.FunctionDef) -> bool:
"""Check if the given node is either a property setter or a deleter."""
return _is_property_kind(node, "setter", "deleter")
def _is_property_decorator(decorator: nodes.Name) -> bool:
for inferred in decorator.infer():
if isinstance(inferred, nodes.ClassDef):
if inferred.qname() in {"builtins.property", "functools.cached_property"}:
return True
for ancestor in inferred.ancestors():
if ancestor.name == "property" and ancestor.root().name == "builtins":
return True
elif isinstance(inferred, nodes.FunctionDef):
# If decorator is function, check if it has exactly one return
# and the return is itself a function decorated with property
returns: List[nodes.Return] = list(
inferred._get_return_nodes_skip_functions()
)
if len(returns) == 1 and isinstance(
returns[0].value, (nodes.Name, nodes.Attribute)
):
inferred = safe_infer(returns[0].value)
if (
inferred
and isinstance(inferred, astroid.objects.Property)
and isinstance(inferred.function, nodes.FunctionDef)
):
return decorated_with_property(inferred.function)
return False
def decorated_with(
func: Union[
nodes.ClassDef, nodes.FunctionDef, astroid.BoundMethod, astroid.UnboundMethod
],
qnames: Iterable[str],
) -> bool:
"""Determine if the `func` node has a decorator with the qualified name `qname`."""
decorators = func.decorators.nodes if func.decorators else []
for decorator_node in decorators:
if isinstance(decorator_node, nodes.Call):
# We only want to infer the function name
decorator_node = decorator_node.func
try:
if any(
i.name in qnames or i.qname() in qnames
for i in decorator_node.infer()
if i is not None and i != astroid.Uninferable
):
return True
except astroid.InferenceError:
continue
return False
def uninferable_final_decorators(
node: nodes.Decorators,
) -> List[Optional[Union[nodes.Attribute, nodes.Name]]]:
"""Return a list of uninferable `typing.final` decorators in `node`.
This function is used to determine if the `typing.final` decorator is used
with an unsupported Python version; the decorator cannot be inferred when
using a Python version lower than 3.8.
"""
decorators = []
for decorator in getattr(node, "nodes", []):
if isinstance(decorator, nodes.Attribute):
try:
import_node = decorator.expr.lookup(decorator.expr.name)[1][0]
except AttributeError:
continue
elif isinstance(decorator, nodes.Name):
lookup_values = decorator.lookup(decorator.name)
if lookup_values[1]:
import_node = lookup_values[1][0]
else:
continue # pragma: no cover # Covered on Python < 3.8
else:
continue
if not isinstance(import_node, (astroid.Import, astroid.ImportFrom)):
continue
import_names = dict(import_node.names)
# from typing import final
is_from_import = ("final" in import_names) and import_node.modname == "typing"
# import typing
is_import = ("typing" in import_names) and getattr(
decorator, "attrname", None
) == "final"
if (is_from_import or is_import) and safe_infer(decorator) in [
astroid.Uninferable,
None,
]:
decorators.append(decorator)
return decorators
@lru_cache(maxsize=1024)
def unimplemented_abstract_methods(
node: nodes.ClassDef, is_abstract_cb: nodes.FunctionDef = None
) -> Dict[str, nodes.NodeNG]:
"""Get the unimplemented abstract methods for the given *node*.
A method can be considered abstract if the callback *is_abstract_cb*
returns a ``True`` value. The check defaults to verifying that
a method is decorated with abstract methods.
The function will work only for new-style classes. For old-style
classes, it will simply return an empty dictionary.
For the rest of them, it will return a dictionary of abstract method
names and their inferred objects.
"""
if is_abstract_cb is None:
is_abstract_cb = partial(decorated_with, qnames=ABC_METHODS)
visited: Dict[str, nodes.NodeNG] = {}
try:
mro = reversed(node.mro())
except NotImplementedError:
# Old style class, it will not have a mro.
return {}
except astroid.ResolveError:
# Probably inconsistent hierarchy, don't try to figure this out here.
return {}
for ancestor in mro:
for obj in ancestor.values():
inferred = obj
if isinstance(obj, nodes.AssignName):
inferred = safe_infer(obj)
if not inferred:
# Might be an abstract function,
# but since we don't have enough information
# in order to take this decision, we're taking
# the *safe* decision instead.
if obj.name in visited:
del visited[obj.name]
continue
if not isinstance(inferred, nodes.FunctionDef):
if obj.name in visited:
del visited[obj.name]
if isinstance(inferred, nodes.FunctionDef):
# It's critical to use the original name,
# since after inferring, an object can be something
# else than expected, as in the case of the
# following assignment.
#
# class A:
# def keys(self): pass
# __iter__ = keys
abstract = is_abstract_cb(inferred)
if abstract:
visited[obj.name] = inferred
elif not abstract and obj.name in visited:
del visited[obj.name]
return visited
def find_try_except_wrapper_node(
node: nodes.NodeNG,
) -> Optional[Union[nodes.ExceptHandler, nodes.TryExcept]]:
"""Return the ExceptHandler or the TryExcept node in which the node is."""
current = node
ignores = (nodes.ExceptHandler, nodes.TryExcept)
while current and not isinstance(current.parent, ignores):
current = current.parent
if current and isinstance(current.parent, ignores):
return current.parent
return None
def find_except_wrapper_node_in_scope(
node: nodes.NodeNG,
) -> Optional[Union[nodes.ExceptHandler, nodes.TryExcept]]:
"""Return the ExceptHandler in which the node is, without going out of scope."""
for current in node.node_ancestors():
if isinstance(current, astroid.scoped_nodes.LocalsDictNodeNG):
# If we're inside a function/class definition, we don't want to keep checking
# higher ancestors for `except` clauses, because if these exist, it means our
# function/class was defined in an `except` clause, rather than the current code
# actually running in an `except` clause.
return None
if isinstance(current, nodes.ExceptHandler):
return current
return None
def is_from_fallback_block(node: nodes.NodeNG) -> bool:
"""Check if the given node is from a fallback import block."""
context = find_try_except_wrapper_node(node)
if not context:
return False
if isinstance(context, nodes.ExceptHandler):
other_body = context.parent.body
handlers = context.parent.handlers
else:
other_body = itertools.chain.from_iterable(
handler.body for handler in context.handlers
)
handlers = context.handlers
has_fallback_imports = any(
isinstance(import_node, (nodes.ImportFrom, nodes.Import))
for import_node in other_body
)
ignores_import_error = _except_handlers_ignores_exceptions(
handlers, (ImportError, ModuleNotFoundError)
)
return ignores_import_error or has_fallback_imports
def _except_handlers_ignores_exceptions(
handlers: nodes.ExceptHandler,
exceptions: Tuple[Type[ImportError], Type[ModuleNotFoundError]],
) -> bool:
func = partial(error_of_type, error_type=exceptions)
return any(func(handler) for handler in handlers)
def get_exception_handlers(
node: nodes.NodeNG, exception=Exception
) -> Optional[List[nodes.ExceptHandler]]:
"""Return the collections of handlers handling the exception in arguments.
Args:
node (nodes.NodeNG): A node that is potentially wrapped in a try except.
exception (builtin.Exception or str): exception or name of the exception.
Returns:
list: the collection of handlers that are handling the exception or None.
"""
context = find_try_except_wrapper_node(node)
if isinstance(context, nodes.TryExcept):
return [
handler for handler in context.handlers if error_of_type(handler, exception)
]
return []
def is_node_inside_try_except(node: nodes.Raise) -> bool:
"""Check if the node is directly under a Try/Except statement
(but not under an ExceptHandler!).
Args:
node (nodes.Raise): the node raising the exception.
Returns:
bool: True if the node is inside a try/except statement, False otherwise.
"""
context = find_try_except_wrapper_node(node)
return isinstance(context, nodes.TryExcept)
def node_ignores_exception(node: nodes.NodeNG, exception=Exception) -> bool:
"""Check if the node is in a TryExcept which handles the given exception.
If the exception is not given, the function is going to look for bare
excepts.
"""
managing_handlers = get_exception_handlers(node, exception)
if not managing_handlers:
return False
return any(managing_handlers)
def class_is_abstract(node: nodes.ClassDef) -> bool:
"""Return true if the given class node should be considered as an abstract
class
"""
# Only check for explicit metaclass=ABCMeta on this specific class
meta = node.declared_metaclass()
if meta is not None:
if meta.name == "ABCMeta" and meta.root().name in ABC_MODULES:
return True
for ancestor in node.ancestors():
if ancestor.name == "ABC" and ancestor.root().name in ABC_MODULES:
# abc.ABC inheritance
return True
for method in node.methods():
if method.parent.frame(future=True) is node:
if method.is_abstract(pass_is_abstract=False):
return True
return False
def _supports_protocol_method(value: nodes.NodeNG, attr: str) -> bool:
try:
attributes = value.getattr(attr)
except astroid.NotFoundError:
return False
first = attributes[0]
if isinstance(first, nodes.AssignName):
if isinstance(first.parent.value, nodes.Const):
return False
return True
def is_comprehension(node: nodes.NodeNG) -> bool:
comprehensions = (
nodes.ListComp,
nodes.SetComp,
nodes.DictComp,
nodes.GeneratorExp,
)
return isinstance(node, comprehensions)
def _supports_mapping_protocol(value: nodes.NodeNG) -> bool:
return _supports_protocol_method(
value, GETITEM_METHOD
) and _supports_protocol_method(value, KEYS_METHOD)
def _supports_membership_test_protocol(value: nodes.NodeNG) -> bool:
return _supports_protocol_method(value, CONTAINS_METHOD)
def _supports_iteration_protocol(value: nodes.NodeNG) -> bool:
return _supports_protocol_method(value, ITER_METHOD) or _supports_protocol_method(
value, GETITEM_METHOD
)
def _supports_async_iteration_protocol(value: nodes.NodeNG) -> bool:
return _supports_protocol_method(value, AITER_METHOD)
def _supports_getitem_protocol(value: nodes.NodeNG) -> bool:
return _supports_protocol_method(value, GETITEM_METHOD)
def _supports_setitem_protocol(value: nodes.NodeNG) -> bool:
return _supports_protocol_method(value, SETITEM_METHOD)
def _supports_delitem_protocol(value: nodes.NodeNG) -> bool:
return _supports_protocol_method(value, DELITEM_METHOD)
def _is_abstract_class_name(name: str) -> bool:
lname = name.lower()
is_mixin = lname.endswith("mixin")
is_abstract = lname.startswith("abstract")
is_base = lname.startswith("base") or lname.endswith("base")
return is_mixin or is_abstract or is_base
def is_inside_abstract_class(node: nodes.NodeNG) -> bool:
while node is not None:
if isinstance(node, nodes.ClassDef):
if class_is_abstract(node):
return True
name = getattr(node, "name", None)
if name is not None and _is_abstract_class_name(name):
return True
node = node.parent
return False
def _supports_protocol(
value: nodes.NodeNG, protocol_callback: nodes.FunctionDef
) -> bool:
if isinstance(value, nodes.ClassDef):
if not has_known_bases(value):
return True
# classobj can only be iterable if it has an iterable metaclass
meta = value.metaclass()
if meta is not None:
if protocol_callback(meta):
return True
if isinstance(value, astroid.BaseInstance):
if not has_known_bases(value):
return True
if value.has_dynamic_getattr():
return True
if protocol_callback(value):
return True
# pylint: disable-next=fixme
# TODO: Should be covered by https://github.com/PyCQA/astroid/pull/1475
if isinstance(value, nodes.ComprehensionScope):
return True
if (
isinstance(value, astroid.bases.Proxy)
and isinstance(value._proxied, astroid.BaseInstance)
and has_known_bases(value._proxied)
):
value = value._proxied
return protocol_callback(value)
return False
def is_iterable(value: nodes.NodeNG, check_async: bool = False) -> bool:
if check_async:
protocol_check = _supports_async_iteration_protocol
else:
protocol_check = _supports_iteration_protocol
return _supports_protocol(value, protocol_check)
def is_mapping(value: nodes.NodeNG) -> bool:
return _supports_protocol(value, _supports_mapping_protocol)
def supports_membership_test(value: nodes.NodeNG) -> bool:
supported = _supports_protocol(value, _supports_membership_test_protocol)
return supported or is_iterable(value)
def supports_getitem(value: nodes.NodeNG, node: nodes.NodeNG) -> bool:
if isinstance(value, nodes.ClassDef):
if _supports_protocol_method(value, CLASS_GETITEM_METHOD):
return True
if is_class_subscriptable_pep585_with_postponed_evaluation_enabled(value, node):
return True
return _supports_protocol(value, _supports_getitem_protocol)
def supports_setitem(value: nodes.NodeNG, _: nodes.NodeNG) -> bool:
return _supports_protocol(value, _supports_setitem_protocol)
def supports_delitem(value: nodes.NodeNG, _: nodes.NodeNG) -> bool:
return _supports_protocol(value, _supports_delitem_protocol)
def _get_python_type_of_node(node: nodes.NodeNG) -> Optional[str]:
pytype = getattr(node, "pytype", None)
if callable(pytype):
return pytype()
return None
@lru_cache(maxsize=1024)
def safe_infer(
node: nodes.NodeNG, context: Optional[InferenceContext] = None
) -> Union[nodes.NodeNG, Type[astroid.Uninferable], None]:
"""Return the inferred value for the given node.
Return None if inference failed or if there is some ambiguity (more than
one node has been inferred of different types).
"""
inferred_types: Set[Optional[str]] = set()
try:
infer_gen = node.infer(context=context)
value = next(infer_gen)
except astroid.InferenceError:
return None
if value is not astroid.Uninferable:
inferred_types.add(_get_python_type_of_node(value))
try:
for inferred in infer_gen:
inferred_type = _get_python_type_of_node(inferred)
if inferred_type not in inferred_types:
return None # If there is ambiguity on the inferred node.
if (
isinstance(inferred, nodes.FunctionDef)
and inferred.args.args is not None
and isinstance(value, nodes.FunctionDef)
and value.args.args is not None
and len(inferred.args.args) != len(value.args.args)
):
return None # Different number of arguments indicates ambiguity
except astroid.InferenceError:
return None # There is some kind of ambiguity
except StopIteration:
return value
return value if len(inferred_types) <= 1 else None
@lru_cache(maxsize=512)
def infer_all(
node: nodes.NodeNG, context: InferenceContext = None
) -> List[nodes.NodeNG]:
try:
return list(node.infer(context=context))
except astroid.InferenceError:
return []
def has_known_bases(klass: nodes.ClassDef, context=None) -> bool:
"""Return true if all base classes of a class could be inferred."""
try:
return klass._all_bases_known
except AttributeError:
pass
for base in klass.bases:
result = safe_infer(base, context=context)
if (
not isinstance(result, nodes.ClassDef)
or result is klass
or not has_known_bases(result, context=context)
):
klass._all_bases_known = False
return False
klass._all_bases_known = True
return True
def is_none(node: nodes.NodeNG) -> bool:
return (
node is None
or (isinstance(node, nodes.Const) and node.value is None)
or (isinstance(node, nodes.Name) and node.name == "None")
)
def node_type(node: nodes.NodeNG) -> Optional[nodes.NodeNG]:
"""Return the inferred type for `node`.
If there is more than one possible type, or if inferred type is Uninferable or None,
return None
"""
# check there is only one possible type for the assign node. Else we
# don't handle it for now
types: Set[nodes.NodeNG] = set()
try:
for var_type in node.infer():
if var_type == astroid.Uninferable or is_none(var_type):
continue
types.add(var_type)
if len(types) > 1:
return None
except astroid.InferenceError:
return None
return types.pop() if types else None
def is_registered_in_singledispatch_function(node: nodes.FunctionDef) -> bool:
"""Check if the given function node is a singledispatch function."""
singledispatch_qnames = (
"functools.singledispatch",
"singledispatch.singledispatch",
)
if not isinstance(node, nodes.FunctionDef):
return False
decorators = node.decorators.nodes if node.decorators else []
for decorator in decorators:
# func.register are function calls
if not isinstance(decorator, nodes.Call):
continue
func = decorator.func
if not isinstance(func, nodes.Attribute) or func.attrname != "register":
continue
try:
func_def = next(func.expr.infer())
except astroid.InferenceError:
continue
if isinstance(func_def, nodes.FunctionDef):
return decorated_with(func_def, singledispatch_qnames)
return False
def get_node_last_lineno(node: nodes.NodeNG) -> int:
"""Get the last lineno of the given node.
For a simple statement this will just be node.lineno,
but for a node that has child statements (e.g. a method) this will be the lineno of the last
child statement recursively.
"""
# 'finalbody' is always the last clause in a try statement, if present
if getattr(node, "finalbody", False):
return get_node_last_lineno(node.finalbody[-1])
# For if, while, and for statements 'orelse' is always the last clause.
# For try statements 'orelse' is the last in the absence of a 'finalbody'
if getattr(node, "orelse", False):
return get_node_last_lineno(node.orelse[-1])
# try statements have the 'handlers' last if there is no 'orelse' or 'finalbody'
if getattr(node, "handlers", False):
return get_node_last_lineno(node.handlers[-1])
# All compound statements have a 'body'
if getattr(node, "body", False):
return get_node_last_lineno(node.body[-1])
# Not a compound statement
return node.lineno
def is_postponed_evaluation_enabled(node: nodes.NodeNG) -> bool:
"""Check if the postponed evaluation of annotations is enabled."""
module = node.root()
return "annotations" in module.future_imports
def is_class_subscriptable_pep585_with_postponed_evaluation_enabled(
value: nodes.ClassDef, node: nodes.NodeNG
) -> bool:
"""Check if class is subscriptable with PEP 585 and
postponed evaluation enabled.
"""
return (
is_postponed_evaluation_enabled(node)
and value.qname() in SUBSCRIPTABLE_CLASSES_PEP585
and is_node_in_type_annotation_context(node)
)
def is_node_in_type_annotation_context(node: nodes.NodeNG) -> bool:
"""Check if node is in type annotation context.
Check for 'AnnAssign', function 'Arguments',
or part of function return type anntation.
"""
# pylint: disable=too-many-boolean-expressions
current_node, parent_node = node, node.parent
while True:
if (
isinstance(parent_node, nodes.AnnAssign)
and parent_node.annotation == current_node
or isinstance(parent_node, nodes.Arguments)
and current_node
in (
*parent_node.annotations,
*parent_node.posonlyargs_annotations,
*parent_node.kwonlyargs_annotations,
parent_node.varargannotation,
parent_node.kwargannotation,
)
or isinstance(parent_node, nodes.FunctionDef)
and parent_node.returns == current_node
):
return True
current_node, parent_node = parent_node, parent_node.parent
if isinstance(parent_node, nodes.Module):
return False
def is_subclass_of(child: nodes.ClassDef, parent: nodes.ClassDef) -> bool:
"""Check if first node is a subclass of second node.
:param child: Node to check for subclass.
:param parent: Node to check for superclass.
:returns: True if child is derived from parent. False otherwise.
"""
if not all(isinstance(node, nodes.ClassDef) for node in (child, parent)):
return False
for ancestor in child.ancestors():
try:
if astroid.helpers.is_subtype(ancestor, parent):
return True
except astroid.exceptions._NonDeducibleTypeHierarchy:
continue
return False
@lru_cache(maxsize=1024)
def is_overload_stub(node: nodes.NodeNG) -> bool:
"""Check if a node is a function stub decorated with typing.overload.
:param node: Node to check.
:returns: True if node is an overload function stub. False otherwise.
"""
decorators = getattr(node, "decorators", None)
return bool(decorators and decorated_with(node, ["typing.overload", "overload"]))
def is_protocol_class(cls: nodes.NodeNG) -> bool:
"""Check if the given node represents a protocol class.
:param cls: The node to check
:returns: True if the node is a typing protocol class, false otherwise.
"""
if not isinstance(cls, nodes.ClassDef):
return False
# Use .ancestors() since not all protocol classes can have
# their mro deduced.
return any(parent.qname() in TYPING_PROTOCOLS for parent in cls.ancestors())
def is_call_of_name(node: nodes.NodeNG, name: str) -> bool:
"""Checks if node is a function call with the given name."""
return (
isinstance(node, nodes.Call)
and isinstance(node.func, nodes.Name)
and node.func.name == name
)
def is_test_condition(
node: nodes.NodeNG,
parent: Optional[nodes.NodeNG] = None,
) -> bool:
"""Returns true if the given node is being tested for truthiness."""
parent = parent or node.parent
if isinstance(parent, (nodes.While, nodes.If, nodes.IfExp, nodes.Assert)):
return node is parent.test or parent.test.parent_of(node)
if isinstance(parent, nodes.Comprehension):
return node in parent.ifs
return is_call_of_name(parent, "bool") and parent.parent_of(node)
def is_classdef_type(node: nodes.ClassDef) -> bool:
"""Test if ClassDef node is Type."""
if node.name == "type":
return True
return any(isinstance(b, nodes.Name) and b.name == "type" for b in node.bases)
def is_attribute_typed_annotation(
node: Union[nodes.ClassDef, astroid.Instance], attr_name: str
) -> bool:
"""Test if attribute is typed annotation in current node
or any base nodes.
"""
attribute = node.locals.get(attr_name, [None])[0]
if (
attribute
and isinstance(attribute, nodes.AssignName)
and isinstance(attribute.parent, nodes.AnnAssign)
):
return True
for base in node.bases:
inferred = safe_infer(base)
if (
inferred
and isinstance(inferred, nodes.ClassDef)
and is_attribute_typed_annotation(inferred, attr_name)
):
return True
return False
def is_assign_name_annotated_with(node: nodes.AssignName, typing_name: str) -> bool:
"""Test if AssignName node has `typing_name` annotation.
Especially useful to check for `typing._SpecialForm` instances
like: `Union`, `Optional`, `Literal`, `ClassVar`, `Final`.
"""
if not isinstance(node.parent, nodes.AnnAssign):
return False
annotation = node.parent.annotation
if isinstance(annotation, nodes.Subscript):
annotation = annotation.value
if (
isinstance(annotation, nodes.Name)
and annotation.name == typing_name
or isinstance(annotation, nodes.Attribute)
and annotation.attrname == typing_name
):
return True
return False
def get_iterating_dictionary_name(
node: Union[nodes.For, nodes.Comprehension]
) -> Optional[str]:
"""Get the name of the dictionary which keys are being iterated over on
a ``nodes.For`` or ``nodes.Comprehension`` node.
If the iterating object is not either the keys method of a dictionary
or a dictionary itself, this returns None.
"""
# Is it a proper keys call?
if (
isinstance(node.iter, nodes.Call)
and isinstance(node.iter.func, nodes.Attribute)
and node.iter.func.attrname == "keys"
):
inferred = safe_infer(node.iter.func)
if not isinstance(inferred, astroid.BoundMethod):
return None
return node.iter.as_string().rpartition(".keys")[0]
# Is it a dictionary?
if isinstance(node.iter, (nodes.Name, nodes.Attribute)):
inferred = safe_infer(node.iter)
if not isinstance(inferred, nodes.Dict):
return None
return node.iter.as_string()
return None
def get_subscript_const_value(node: nodes.Subscript) -> nodes.Const:
"""Returns the value 'subscript.slice' of a Subscript node.
:param node: Subscript Node to extract value from
:returns: Const Node containing subscript value
:raises InferredTypeError: if the subscript node cannot be inferred as a Const
"""
inferred = safe_infer(node.slice)
if not isinstance(inferred, nodes.Const):
raise InferredTypeError("Subscript.slice cannot be inferred as a nodes.Const")
return inferred
def get_import_name(
importnode: Union[nodes.Import, nodes.ImportFrom], modname: str
) -> str:
"""Get a prepared module name from the given import node.
In the case of relative imports, this will return the
absolute qualified module name, which might be useful
for debugging. Otherwise, the initial module name
is returned unchanged.
:param importnode: node representing import statement.
:param modname: module name from import statement.
:returns: absolute qualified module name of the module
used in import.
"""
if isinstance(importnode, nodes.ImportFrom) and importnode.level:
root = importnode.root()
if isinstance(root, nodes.Module):
try:
return root.relative_to_absolute_name(modname, level=importnode.level)
except TooManyLevelsError:
return modname
return modname
def is_sys_guard(node: nodes.If) -> bool:
"""Return True if IF stmt is a sys.version_info guard.
>>> import sys
>>> if sys.version_info > (3, 8):
>>> from typing import Literal
>>> else:
>>> from typing_extensions import Literal
"""
if isinstance(node.test, nodes.Compare):
value = node.test.left
if isinstance(value, nodes.Subscript):
value = value.value
if (
isinstance(value, nodes.Attribute)
and value.as_string() == "sys.version_info"
):
return True
return False
def is_typing_guard(node: nodes.If) -> bool:
"""Return True if IF stmt is a typing guard.
>>> from typing import TYPE_CHECKING
>>> if TYPE_CHECKING:
>>> from xyz import a
"""
return isinstance(
node.test, (nodes.Name, nodes.Attribute)
) and node.test.as_string().endswith("TYPE_CHECKING")
def is_node_in_typing_guarded_import_block(node: nodes.NodeNG) -> bool:
"""Return True if node is part for guarded `typing.TYPE_CHECKING` if block."""
return isinstance(node.parent, nodes.If) and is_typing_guard(node.parent)
def is_node_in_guarded_import_block(node: nodes.NodeNG) -> bool:
"""Return True if node is part for guarded if block.
I.e. `sys.version_info` or `typing.TYPE_CHECKING`
"""
return isinstance(node.parent, nodes.If) and (
is_sys_guard(node.parent) or is_typing_guard(node.parent)
)
def is_reassigned_after_current(node: nodes.NodeNG, varname: str) -> bool:
"""Check if the given variable name is reassigned in the same scope after the current node."""
return any(
a.name == varname and a.lineno > node.lineno
for a in node.scope().nodes_of_class(
(nodes.AssignName, nodes.ClassDef, nodes.FunctionDef)
)
)
def is_deleted_after_current(node: nodes.NodeNG, varname: str) -> bool:
"""Check if the given variable name is deleted in the same scope after the current node."""
return any(
getattr(target, "name", None) == varname and target.lineno > node.lineno
for del_node in node.scope().nodes_of_class(nodes.Delete)
for target in del_node.targets
)
def is_function_body_ellipsis(node: nodes.FunctionDef) -> bool:
"""Checks whether a function body only consists of a single Ellipsis."""
return (
len(node.body) == 1
and isinstance(node.body[0], nodes.Expr)
and isinstance(node.body[0].value, nodes.Const)
and node.body[0].value.value == Ellipsis
)
def is_base_container(node: Optional[nodes.NodeNG]) -> bool:
return isinstance(node, nodes.BaseContainer) and not node.elts
def is_empty_dict_literal(node: Optional[nodes.NodeNG]) -> bool:
return isinstance(node, nodes.Dict) and not node.items
def is_empty_str_literal(node: Optional[nodes.NodeNG]) -> bool:
return (
isinstance(node, nodes.Const) and isinstance(node.value, str) and not node.value
)
def returns_bool(node: nodes.NodeNG) -> bool:
"""Returns true if a node is a return that returns a constant boolean."""
return (
isinstance(node, nodes.Return)
and isinstance(node.value, nodes.Const)
and node.value.value in {True, False}
)
def get_node_first_ancestor_of_type(
node: nodes.NodeNG, ancestor_type: Union[Type[T_Node], Tuple[Type[T_Node], ...]]
) -> Optional[T_Node]:
"""Return the first parent node that is any of the provided types (or None)."""
for ancestor in node.node_ancestors():
if isinstance(ancestor, ancestor_type):
return ancestor
return None
def get_node_first_ancestor_of_type_and_its_child(
node: nodes.NodeNG, ancestor_type: Union[Type[T_Node], Tuple[Type[T_Node], ...]]
) -> Union[Tuple[None, None], Tuple[T_Node, nodes.NodeNG]]:
"""Modified version of get_node_first_ancestor_of_type to also return the
descendant visited directly before reaching the sought ancestor
Useful for extracting whether a statement is guarded by a try, except, or finally
when searching for a TryFinally ancestor.
"""
child = node
for ancestor in node.node_ancestors():
if isinstance(ancestor, ancestor_type):
return (ancestor, child)
child = ancestor
return None, None
def in_type_checking_block(node: nodes.NodeNG) -> bool:
"""Check if a node is guarded by a TYPE_CHECKS guard."""
return any(
isinstance(ancestor, nodes.If)
and ancestor.test.as_string() in TYPING_TYPE_CHECKS_GUARDS
for ancestor in node.node_ancestors()
)