// Copyright 2020 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. #include #include "gtest/gtest.h" #include "pw_chrono/system_clock.h" #include "pw_sync/binary_semaphore.h" using pw::chrono::SystemClock; using namespace std::chrono_literals; namespace pw::sync { namespace { extern "C" { // Functions defined in binary_semaphore_facade_test_c.c which call the API // from C. void pw_sync_BinarySemaphore_CallRelease(pw_sync_BinarySemaphore* semaphore); void pw_sync_BinarySemaphore_CallAcquire(pw_sync_BinarySemaphore* semaphore); bool pw_sync_BinarySemaphore_CallTryAcquire(pw_sync_BinarySemaphore* semaphore); bool pw_sync_BinarySemaphore_CallTryAcquireFor( pw_sync_BinarySemaphore* semaphore, pw_chrono_SystemClock_Duration timeout); bool pw_sync_BinarySemaphore_CallTryAcquireUntil( pw_sync_BinarySemaphore* semaphore, pw_chrono_SystemClock_TimePoint deadline); ptrdiff_t pw_sync_BinarySemaphore_CallMax(void); } // extern "C" // We can't control the SystemClock's period configuration, so just in case // duration cannot be accurately expressed in integer ticks, round the // duration up. constexpr SystemClock::duration kRoundedArbitraryDuration = SystemClock::for_at_least(42ms); constexpr pw_chrono_SystemClock_Duration kRoundedArbitraryDurationInC = PW_SYSTEM_CLOCK_MS(42); TEST(BinarySemaphore, EmptyInitialState) { BinarySemaphore semaphore; EXPECT_FALSE(semaphore.try_acquire()); } // TODO(pwbug/291): Add real concurrency tests once we have pw::thread. TEST(BinarySemaphore, Release) { BinarySemaphore semaphore; semaphore.release(); semaphore.release(); semaphore.acquire(); // Ensure it fails when empty. EXPECT_FALSE(semaphore.try_acquire()); } BinarySemaphore empty_initial_semaphore; TEST(BinarySemaphore, EmptyInitialStateStatic) { EXPECT_FALSE(empty_initial_semaphore.try_acquire()); } BinarySemaphore release_semaphore; TEST(BinarySemaphore, ReleaseStatic) { release_semaphore.release(); release_semaphore.release(); release_semaphore.acquire(); // Ensure it fails when empty. EXPECT_FALSE(release_semaphore.try_acquire()); } TEST(BinarySemaphore, TryAcquireFor) { BinarySemaphore semaphore; semaphore.release(); SystemClock::time_point before = SystemClock::now(); EXPECT_TRUE(semaphore.try_acquire_for(kRoundedArbitraryDuration)); SystemClock::duration time_elapsed = SystemClock::now() - before; EXPECT_LT(time_elapsed, kRoundedArbitraryDuration); // Ensure it blocks and fails when empty. before = SystemClock::now(); EXPECT_FALSE(semaphore.try_acquire_for(kRoundedArbitraryDuration)); time_elapsed = SystemClock::now() - before; EXPECT_GE(time_elapsed, kRoundedArbitraryDuration); } TEST(BinarySemaphore, TryAcquireUntil) { BinarySemaphore semaphore; semaphore.release(); const SystemClock::time_point deadline = SystemClock::now() + kRoundedArbitraryDuration; EXPECT_TRUE(semaphore.try_acquire_until(deadline)); EXPECT_LT(SystemClock::now(), deadline); // Ensure it blocks and fails when empty. EXPECT_FALSE(semaphore.try_acquire_until(deadline)); EXPECT_GE(SystemClock::now(), deadline); } TEST(BinarySemaphore, EmptyInitialStateInC) { BinarySemaphore semaphore; EXPECT_FALSE(pw_sync_BinarySemaphore_CallTryAcquire(&semaphore)); } TEST(BinarySemaphore, ReleaseInC) { BinarySemaphore semaphore; pw_sync_BinarySemaphore_CallRelease(&semaphore); pw_sync_BinarySemaphore_CallRelease(&semaphore); pw_sync_BinarySemaphore_CallAcquire(&semaphore); // Ensure it fails when empty. EXPECT_FALSE(pw_sync_BinarySemaphore_CallTryAcquire(&semaphore)); } TEST(BinarySemaphore, TryAcquireForInC) { BinarySemaphore semaphore; pw_sync_BinarySemaphore_CallRelease(&semaphore); pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now(); ASSERT_TRUE(pw_sync_BinarySemaphore_CallTryAcquireFor( &semaphore, kRoundedArbitraryDurationInC)); pw_chrono_SystemClock_Duration time_elapsed = pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now()); EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks); // Ensure it blocks and fails when empty. before = pw_chrono_SystemClock_Now(); EXPECT_FALSE(pw_sync_BinarySemaphore_CallTryAcquireFor( &semaphore, kRoundedArbitraryDurationInC)); time_elapsed = pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now()); EXPECT_GE(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks); } TEST(BinarySemaphore, TryAcquireUntilInC) { BinarySemaphore semaphore; pw_sync_BinarySemaphore_CallRelease(&semaphore); pw_chrono_SystemClock_TimePoint deadline; deadline.duration_since_epoch = { .ticks = pw_chrono_SystemClock_Now().duration_since_epoch.ticks + kRoundedArbitraryDurationInC.ticks, }; ASSERT_TRUE( pw_sync_BinarySemaphore_CallTryAcquireUntil(&semaphore, deadline)); EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks, deadline.duration_since_epoch.ticks); // Ensure it blocks and fails when empty. EXPECT_FALSE( pw_sync_BinarySemaphore_CallTryAcquireUntil(&semaphore, deadline)); EXPECT_GE(pw_chrono_SystemClock_Now().duration_since_epoch.ticks, deadline.duration_since_epoch.ticks); } TEST(BinarySemaphore, MaxInC) { EXPECT_EQ(BinarySemaphore::max(), pw_sync_BinarySemaphore_Max()); } } // namespace } // namespace pw::sync