// Copyright 2020 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. #include "pw_random/xor_shift.h" #include #include #include #include #include "gtest/gtest.h" namespace pw::random { namespace { constexpr uint64_t seed1 = 5; constexpr uint64_t result1[] = { 0x423212e85fb37474u, 0x96051f25a1aadc74u, 0x8ac1f520f5595a79u, 0x7587fe57095b7c11u, }; constexpr int result1_count = sizeof(result1) / sizeof(result1[0]); constexpr uint64_t seed2 = 0x21feabcd5fb37474u; constexpr uint64_t result2[] = { 0x568ea260a4f3e793u, 0x5ea87d669ab04d36u, 0x77a8675eec48ae8bu, }; constexpr int result2_count = sizeof(result2) / sizeof(result2[0]); TEST(XorShiftStarRng64, ValidateSeries1) { XorShiftStarRng64 rng(seed1); for (size_t i = 0; i < result1_count; ++i) { uint64_t val = 0; EXPECT_EQ(rng.GetInt(val).status(), Status::OK); EXPECT_EQ(val, result1[i]); } } TEST(XorShiftStarRng64, ValidateSeries2) { XorShiftStarRng64 rng(seed2); for (size_t i = 0; i < result2_count; ++i) { uint64_t val = 0; EXPECT_EQ(rng.GetInt(val).status(), Status::OK); EXPECT_EQ(val, result2[i]); } } TEST(XorShiftStarRng64, InjectEntropyBits) { XorShiftStarRng64 rng(seed1); uint64_t val = 0; rng.InjectEntropyBits(0x1, 1); EXPECT_EQ(rng.GetInt(val).status(), Status::OK); EXPECT_NE(val, result1[0]); } // Ensure injecting the same entropy integer, but different bit counts causes // the randomly generated number to differ. TEST(XorShiftStarRng64, EntropyBitCount) { XorShiftStarRng64 rng_1(seed1); uint64_t first_val = 0; rng_1.InjectEntropyBits(0x1, 1); EXPECT_EQ(rng_1.GetInt(first_val).status(), Status::OK); // Use the same starting seed. XorShiftStarRng64 rng_2(seed1); uint64_t second_val = 0; // Use a different number of entropy bits. rng_2.InjectEntropyBits(0x1, 2); EXPECT_EQ(rng_2.GetInt(second_val).status(), Status::OK); EXPECT_NE(first_val, second_val); } // Ensure injecting the same integer bit-by-bit applies the same transformation // as all in one call. This lets applications decide which is more convenient // without worrying about algorithmic changes. TEST(XorShiftStarRng64, IncrementalEntropy) { XorShiftStarRng64 rng_1(seed1); uint64_t first_val = 0; rng_1.InjectEntropyBits(0x6, 3); EXPECT_EQ(rng_1.GetInt(first_val).status(), Status::OK); // Use the same starting seed. XorShiftStarRng64 rng_2(seed1); uint64_t second_val = 0; // Use a different number of injection calls. 6 = 0b110 rng_2.InjectEntropyBits(0x1, 1); rng_2.InjectEntropyBits(0x1, 1); rng_2.InjectEntropyBits(0x0, 1); EXPECT_EQ(rng_2.GetInt(second_val).status(), Status::OK); EXPECT_EQ(first_val, second_val); } TEST(XorShiftStarRng64, InjectEntropy) { XorShiftStarRng64 rng(seed1); uint64_t val = 0; constexpr std::array entropy{std::byte(0xaf), std::byte(0x9b), std::byte(0x33), std::byte(0x17), std::byte(0x02)}; rng.InjectEntropy(entropy); EXPECT_EQ(rng.GetInt(val).status(), Status::OK); EXPECT_NE(val, result1[0]); } } // namespace } // namespace pw::random